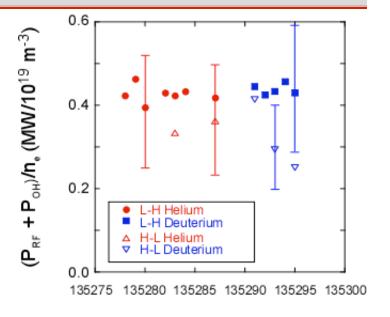

P_{LH} for D and He plasmas using RF current drive with symmetric phasing

College W&M Colorado Sch Mines Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

D.J. Battaglia^{1*}, R. Maingi¹, S. Kaye², J. Hosea², G. Taylor², S. Zweben², et. al.

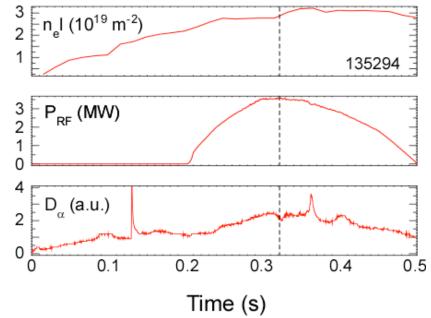
 ¹ Oak Ridge National Laboratory, Oak Ridge, TN
 ² Princeton Plasma Physics Lab, Princeton, NJ
 * Participant in the U.S. DOE Fusion Energy Postdoctoral Research Program administered by ORISE & ORAU

NSTX Research Forum Princeton, NJ



Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Dependence of P_{LH} on ion species is an ITER priority


- ITPA priority to determine P_{LH} versus ionic species (TC-4)
 - Important for ITER power requirements
 - P_{LH} for He reported to be 1 1.8 times larger than D plasmas
- XP941 suggests minimal difference in P_{LH} in D and He on NSTX
 - RF heating: provided useful tool for P_{heat} scan
 - -90° strap-to-strap phasing had low (~ 20%) power efficiency
 - Led to large error bars in $\mathsf{P}_{\mathsf{heat}}$ calculation
 - Implies strong SOL heating which may skew interpretation
 - Analysis still on-going

Shot #

Repeat XP941 with symmetric RF phasing to reduce error bars in P_{LH} calculation

- Propose using symmetric phasing with higher efficiency
 - Reduces error in P_{RF} and decreases power loss at edge
 - Insert small steps in P_{RF} to measure dW/dt during discharge
 - Try to minimize dW/dt close to transition
- Propose 1 day experiment to run D and He plasmas
 - Follows demonstration of H-mode in D and He plasmas using symmetric RF and LLD
 ³ En L(10¹⁹ m⁻²)
 - Run similar plasmas with D and He
 - Match shape, I_p, B_t, n_e (if possible)
 - Scan RF power to find P_{LH} and P_{HL} similar to XP941
 - Characterize turbulence with SGI (Zweben et. al.) and high-k scattering (Ren et. al.)

3